Math 235

General Proofs Help Table

What you are trying to prove

What to use when specific theorems fail

ABA\le B

Prove A is a subset of B

7.1 Fundamental Subspaces

Concepts
Representations

Col(A)Col(A)

Let xCol(A)\vec{x} \in Col(A) and r1,...rm=rows in A\vec{r_1}, ... \vec{r_m}=rows \space in \space A. x=c1r1+...+cmrm\vec{x}=c_1\vec{r_1}+...+c_m\vec{r_m}

Null(A)Null(A)

Let xNull(A)\vec{x} \in Null(A) and r1,...rm=rows in A\vec{r_1}, ... \vec{r_m}=rows \space in \space A. 0=[r1xrmx]\vec{0}=\begin{bmatrix}\vec{r_1}\vec{x}\\\vdots\\\vec{r_m}\vec{x}\end{bmatrix}

Extensions from Theorems

Theorem 7.1.5: rank(A)=rank(AT)rank(A)=rank(A^T)

ightarrowCol(A)=Row(AT),Row(A)=Col(AT)ightarrow Col(A)=Row(A^T), Row(A)=Col(A^T)

8.2 Linear Mappings

Inventing/Finding linear mappings

Common VV and WW vector spaces to use:

Vector Space
Dimension

P2(R)P_2(\R)

# of xnx^n terms e.g. dim(a+bx+cx2)=3dim(a+bx+cx^2)=3

M2x2(R)M_{2x2}(\R)

4

n^n

n

Practice: pg. 224 q3,4

Proofs Help

Definitions
Assumptions/Information
Interpretations/Applicable Theorems

L:VWL: V\rightarrow W is linear mapping

{L(v1),...L(vk)}\{L(\vec{v_1}), ...L(\vec{v_k})\} spans WW

Range(L)=WRange(L)=W, dim(Range(L))=k=rank(L)dim(Range(L))=k=rank(L)

L:VWL: V\rightarrow W is linear mapping

dim(V)=ndim(V)=n rank(L)=dim(Range(L))rank(L)=dim(Range(L))

L:VWL: V\rightarrow W is linear mapping

Ker(L)={0}Ker(L)=\{\vec{0}\}

dim(Ker(L))=0=nullity(L)dim(Ker(L))=0=nullity(L)

L:UVL: U\rightarrow V is linear mapping M:VWM: V\rightarrow W is linear mapping

Range(ML)Range(M \circ L)

Let xRange(ML)\vec{x}\in Range(M\circ L). Then there exists vV\vec{v}\in V where x=(ML)(v)=M(L(v))Range(M)\vec{x}=(M\circ L)(\vec{v})=M(L(\vec{v}))\in Range(M). Therefore Range(ML)Range(M \circ L) is a subset of Range(M)Range(M)

What you are trying to prove

What to use

dimVdimWdim V \le dim W

1. Rank nullity theorem 2. Prove that V is a subset of the W

rank(ML)rank(M)rank(M \circ L) \le rank (M)

Prove that the Range(ML)Range(M \circ L) is a subset of Range(M)Range(M) - Can only use this if both ranges are in the same subspace

rank(ML)rank(L)rank(M \circ L) \le rank (L)

Since they are not in the same subspace, we cannot use the above strategy Instead, analyze kernels and use rank-nullity theorem. ightarrowightarrow Prove that ker(ML)ker(L)ker(M \circ L) \ge ker(L), then use rank-nullity theorem to do the rest

When you are given information about rank, try to turn it into information about nullity instead since you can generally do more with kernals then range.

8.3 Matrix of a Linear Mapping

Solving for [xB][\vec{x}_B]:

  • x=c1B1+c2B2...\vec{x}=c_1\vec{B_1}+c_2\vec{B_2}... Solve for c1,c2,...c_1, c_2, ...

    • If x\vec{x} is a polynomial, collect like terms on the RHS if x\vec{x} is in the form a+bx+...a+b\vec{x}+... This way we can do coefficient equality in order to solve for the coefficients (pg. 226 example)

Solving for [L(v)]C[L(\vec{v})]_C

  • L(v)=c1C1+...L(\vec{v})=c_1C_1+... Solve for c1,...c_1, ...

8.4 Isomorphisms

Assumptions/Information
Interpretations/Applicable Theorems

VV is isomorphic to WW

1. There exists L:VWL: V \rightarrow W that is linear mapping. 2. L is 1-1 and onto ightarrowightarrow Range(L)=WRange(L)=W and Ker(L)={0}Ker(L)=\{\vec{0}\}

What you are trying to prove

What to use

VV is isomorphic to WW

1. Define a basis for VV and a basis for WW 2. Define mapping L:VWL: V \rightarrow W that maps the basis for VV to the basis for WW e.g. V={v1,...v2}V=\{ \vec{v_1},...\vec{v_2}\}, W={w1,...w2}W=\{ \vec{w_1},...\vec{w_2}\} L(t1v1+...+tnvn)=t1w1+...+tnwnL(t_1\vec{v_1}+...+t_n\vec{v_n})=t_1\vec{w_1}+...+t_n\vec{w_n} 3. Prove that the mapping is linear, 1-1, and onto.

LL is injective

Prove that ker(L)={0}ker(L)=\{\vec{0}\}

Last updated