CNN Input Output Shape
Input Shape
Displaying Input Image
from PIL import Image
import matplotlib.pyplot as plt
### Displaying image from direct path ###
image = Image.open(img_path).convert("RGB")
plt.imshow(image)
### Displaying image from http ###
import requests
response = requests.get(http_address)
image = Image.open(BytesIO(response.content)).convert("RGB")
plt.imshow(image)
### Displaying multiple images in one row ###
f, axarr = plt.subplots(1,2) # plt.subplots(# of rows, # of columns)
axarr[0].imshow(Image.open(STYLE_IMG).convert("RGB"))
axarr[1].imshow(Image.open(CONTENT_IMG).convert("RGB"))
## Could also do the above it like this ##
fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.imshow(im_convert(content))
ax2.imshow(im_convert(style))
### Displaying tensor as an image ###
image = tensor.to("cpu").clone().detach()
image = image.numpy().squeeze()
image = image.transpose(1,2,0)
# These normalization values must match your respective model
image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
image = image.clip(0, 1) # now the image can be treated like an Image.open()Batch Size
Specifying batch size in CNN
Specifying batch size when fitting (default batch size will be None)
None)Depth of an image
Output Shape
Changing dimensions of Output Shape
Last updated