Capsule Networks
Last updated
Was this helpful?
Last updated
Was this helpful?
An alternative to pooling in convolutional neural networks.
Sometimes when outputting a smaller representation of an image, spatial information is lost. We can use capsule networks to avoid this.
They detect parts in an object within the context of the spatial information.
Capsule networks are made of parent and child nodes that build up a complete picture of an object.
Capsules are a collection of nodes. Each node contains information about a specific part (width, orientation, colour), and outputs a vector with:

Here's a Github repo of a PyTorch implementation.
Magnitude () = the probability that a part exists; a value between 0 and 1.
Orientation () = the state of the part properties