Improving Nlu Model
Pipelines
2.pretrained_embeddings_convert
3.pretrained_embeddings_spacy
supervised_embeddings
supervised_embeddings
Uses whitespace for tokenization
Default Components:
eg. if chosen language is not whitespace-tokenized, replace
WhitespaceTokenizer
with your own tokenizerNote: uses 2
CountVectorsFeaturizer
1st one: featurizes text based on words
2nd one: Featurizes based on character n-grams, preserving word boundaries
pretrained_embeddings_convert
pretrained_embeddings_convert
pretrained sentence encoding model ConveRT to extract vector representations of complete user utterance as a whole
pretrained_embeddings_spacy
pretrained_embeddings_spacy
pre-trained word vectors from either GloVe or fastText
MITIE
MITIE
Need your own word corpus Learn more to train
Last updated