Manipulating Built Dataframes
Apply function
df['column_name'] = df['column_name'].apply(
lambda x :
float(x.replace("$", "0",).replace(",", "").strip()))
Insert column
df.insert(1, 'column_name', data)
Resetting index
df = df.reset_index(drop=True)
pd.concat([s1, s2], ignore_index=True)
Remove rows that do not contain numbers
df[pd.to_numeric(df['Funding'], errors='coerce').notnull()]
Drop if all columns are Nan
df.dropna(axis=0, how='all')
Clean up all cells in dataframe
def clean(row):
return row.replace("nan", "").strip()
df.applymap(clean)
Drop rows with NAs in specific columns
df = df.dropna(axis=0, subset=['column_name'])
# Replace values with NA to make this wok
import numpy as np
df['column_name'] = df['column_name'].replace('-', np.nan)
df = df.dropna(axis=0, subset=['column_name'])
Drop rows with specific strings
df[~df.C.str.contains("XYZ", na=False)]
Drop rows with empty cells
df['Tenant'].replace('', np.nan, inplace=True)
Last updated
Was this helpful?