Laura's Wiki
  • README
  • C++
    • CS 246
      • Lecture 1
      • Lecture 10
      • Lecture 11
      • Lecture 12
      • Lecture 13
      • Lecture 14
      • Lecture 15
      • Lecture 16
      • Lecture 17
      • Lecture 18
      • Lecture 19
      • Lecture 2
      • Lecture 20
      • Lecture 21
      • Lecture 22
      • Lecture 23
      • Lecture 3
      • Lecture 4
      • Lecture 5
      • Lecture 6
      • Lecture 7
      • Lecture 8
      • Lecture 9
      • Notes To Rememeber
  • Data Science
    • Jupyter Notebooks
      • Jupyter Notebook With Vs Code
      • Jupyter Notebooks Virtual Env
      • Jupyter Notify
      • Troubleshooting
    • Pandas
      • Box And Whisker Plots
      • Lists And Dictionaries
      • Manipulating Built Dataframes
      • Troubleshooting
    • Time Series
      • Autocorrelation Serial Correlation
      • Correlation Pct Change
      • Linear Regression
      • Time Series
  • Databases
    • SQL Commands
      • Basic Commands
      • Foreign Key Commands
      • Foreign Key
    • MySQL
    • Postgres
    • SQLAlchemy
  • DevOps
    • AWS
      • AWS EKS
      • Tmux
    • Docker
      • Docker Commands
      • docker-compose.yml
      • Docker Images
      • Docker Mapping
      • Docker Networks
      • Docker Storage
      • Dockerfile
      • Overview
    • Jenkins
      • Jenkins Configurations
      • Jenkins Master Slave
      • Jenkinsfile
      • Troubleshooting Pipelines
    • Kubernetes
      • Certificates
      • Example
      • Helm Commands
      • Introduction
      • Kubernetes Architecture
      • Kubernetes Commands
      • Kubernetes External Access
      • Kubernetes Networking
      • Kubernetes Troubleshoot
      • Kubernetes Volumes
      • Routing
      • Volumes
  • GUI
    • PyQT
      • Overview
  • Interview
    • Data Science Interview
      • Knowledge Interview Questions
    • SE Interview
      • Linked Lists
      • Trees
    • Interview Questions
  • Machine Learning
    • Algorithms
      • Algorithms Pros And Cons
      • Machine Learning Models Algorithms
    • Convolutional Neural Networks
      • Capsule Networks
      • CNN Input Output Shape
      • CNN Layers
      • Convolutional Hypercolumns
      • Groundbreaking Architectures
      • Image Augmentation
      • Localization Object Detection
      • Prepare Images For CNN
    • Evaluation
      • Kullback Leibler Divergence
      • Loss Functions
      • Metrics To Evaluate Ml Algorithms
    • fast.ai
      • Class Learner
      • Nlp And Databunch
      • Training
    • GAN
      • Introduction To Gan
    • LLMs
      • Guardrails
    • Machine Learning Audio Classification
      • Background
      • Building CNN
      • Deepplaylist RNNs To Predict Song Similarity
      • Loading Data
      • Model Preparation
      • Plotting Calculating And Cleaning
    • Natural Language Processing
      • Filtering Stop Words
      • Gibberish N Gram Language Model
      • Key Word Finder
      • N Gram Language Models
    • Neural Networks
      • Activation Functions
      • Backpropagation Reverse Mode Differentiation
      • Introduction To Neural Networks
      • Neural Networks
      • Training A Neural Network
      • Training Own Datasets
    • Object Tracking
      • Deepsort Overview
      • Detection Vs Tracking
    • PyTorch
      • Audio Classifier Tutorial
      • Convolutional Neural Networks
      • Tensors
    • Rasa
      • Bot Get Info Pipelines
      • Building Bot
      • Evaluating Entities
      • Improving Nlu Model
      • Optimizing Entitiy Recognition
      • Optimizing Entity Recognition
      • Optimizing Hyperparameter
      • Optimizing Intent
      • Text Featurizers
      • Tokenizers
    • Recurrent Neural Networks
      • Lstm Networks
      • Recurrent Neural Networks
      • Vanishing Gradients In RNNs
    • Research Papers
      • Convolutional Neural Networks For Automatic Image Colorization
      • Learning Representation For Automatic Colorization
      • Stack GAN
      • Style Transfer
    • Scikit Learn
      • Example Of Training And Predicting Model
      • Measuring Model Accuracy
      • Model Validation
      • Random Forests
      • Selecting Data For Modeling
    • Spacy
      • Language Processing Pipelines
    • Stanford ML Course
      • Classification And Representation
      • Computing Parameters Analytically
      • Linear Algebra Review
      • Model Cost Function
      • Multivariate Linear Regression
      • Parameter Learning
      • Supervised Unsupervised Learning
    • Tensorflow
      • Multiinput Keras
      • Tensorflow Pretrained
      • Tensorflow Tpu
  • Math
    • Math 235
    • Math 239 Formula Theorems
    • Math 239
  • Miscellaneous
    • Bazel
      • Commands
    • Kafka
      • Introduction
    • Regex
      • Useful Regex Patterns
    • API
    • Callbacks
    • Cron Job
    • Gitbook
    • Google Colab
    • Processors
  • Networking
    • Https
    • Ngrok
    • Port Forwarding
    • Tcp
  • Python
    • Object Oriented Programming
      • Args And Kwargs
      • Dataclasses
      • Built-in Methods
    • Argparse
    • Configparser
    • Contextmanager
    • Decorators
    • Functools
    • Imports
    • Linked Lists
    • Logging
    • Multiprocessing
    • Multithreading
    • Nested Dictionaries
    • Operators
    • Pickle
    • Profiling
    • Regex
    • Singletons
    • String Tricks
    • Troubleshooting
    • Unit Testing
  • R
    • Useful Commands
  • Shell
    • Linux
      • Environment Variables
      • File Management
      • IO
      • Networking
      • Permissions
      • Processes
      • Profiling
      • Storage Space Commands
      • Virtual Environment
    • Mac OS X
      • Python
    • Windows
      • Environment
  • Version Control
    • Git
      • Committing Pushing
      • Git Branches
      • Git Command Options
      • Git Merge Conflicts
      • Pr Checklist
      • Pre Commit
      • Ssh
      • Troubleshooting
  • Web
    • Django
      • Activating Grantmatch
      • Forms
      • Manipulating Models
      • Migrating Models
      • Running Tests
      • Signals
      • Troubleshooting
      • Tv Dashboard Stuff
    • Flask
      • Files
      • Passing Data Between Backend And Frontend
      • Web Cache
    • Laravel
      • Adding Js Css To Ftx Templates
      • Database Queries
      • Migrations
      • Troubleshooting
    • Npm
      • Untitled
    • React
      • Formatting
      • Lifecycle Method
      • State
    • Selenium
      • Beautiful Soup Integration
      • Finding Elements
      • Setting Up Headless Chrome
    • Web Scraping
      • Beautifulsoup
      • Data Cleaning
      • PDF To CSV
      • Read PDFs
      • Requests And Json
      • Tor
    • HTMLCSS
  • Work
    • LLM
      • Nemo
Powered by GitBook
On this page

Was this helpful?

  1. Machine Learning

Evaluation

Kullback Leibler DivergenceLoss FunctionsMetrics To Evaluate Ml Algorithms
PreviousPrepare Images For CNNNextKullback Leibler Divergence

Was this helpful?